

Carbon

Soil stores carbon (C) in organic matter. This has two benefits. First, sufficient organic matter ensures healthy soil. Second, sequestering carbon in soil helps reduce the amount of CO₂ in the atmosphere.

Carbon

Chemical

Soil Physics

Physical properties of the soil include water retention capacity, the clay-humus complex (CEC), texture, and acidity (pH). These factors are essential for soil health as they determine soil structure and the amount of water and available nutrients.

Soil Chemistry

In healthy soil, macro and micronutrients are present in the right amounts, allowing for optimal plant growth.

Macronutrients include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), and magnesium (Mg). Micronutrients include manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and boron (B). All these elements are present in different fractions in the soil and can be made directly available to plants or stored in the soil reserve.

Physical

Soil Biology

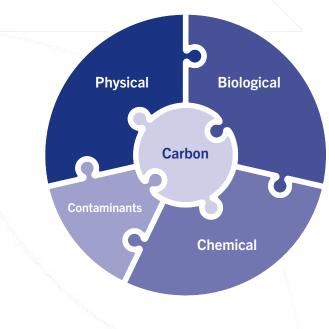
In healthy soil, there is an active and diverse soil life. Microorganisms such as fungi and bacteria convert plant residues into humus and nutrients. A diverse soil life also ensures a resilient soil where diseases and pests have less chance.

Contaminants

Contaminants in the soil disrupt soil health. Measuring the amount of biologically available heavy metals is essential. Depending on the soil pH, certain metals can be absorbed by crops to a greater or lesser extent. These harmful substances can threaten plant health and food safety, for example when aluminium causes root damage.

Contaminants

Biological


Healthy soil

Working towards healthy soil in agriculture is like solving a complex jigsaw puzzle, where all the pieces must fit together and be balanced.

Farmers and land managers can benefit from understanding soil health by using accurate data from detailed analyses.

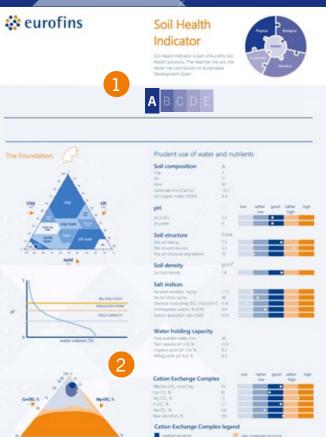
Healthy soil is the foundation of food quality and food security. It also contributes to more resilient crops, cleaner water, sustainable production, greater biodiversity, and helps to store carbon and reduce CO_2 emissions. These are all factors that help farmers and land managers run businesses that are more environmentally and financially sustainable.

Soil Health Indicator helps you gain control of the complex jigsaw puzzle of soil health. It provides accurate data to tackle these challenges; from nutrient management planning to carbon sequestration.

A simple and powerful method to assess the health of your soil. The A-B-C-D-E score provides quick insight into the current soil health status, and the impact of any actions taken or improvements made. Each letter represents a specific soil health condition.

2. Cation Exchange Capacity (CEC): -----

The cation exchange capacity (CEC), also known as the clay-humus complex, determines how well the soil retains and exchanges nutrients with the soil solution. A high CEC means that the soil can hold many essential nutrients such as calcium (Ca₂+), magnesium (Mg₂+), and potassium (K+). However, when the CEC is occupied by elements like aluminum (Al₃+) and hydrogen (H₊), it can negatively affect soil fertility. The size and occupation of the CEC with useful nutrients is a measure of soil fertility.


3. Soil and Crop-based recommendations -----

1. Crop-based recommendations:

Fertilisation advice for up to six crops is generated, based on all analysis results in the package. By working with expected yields, advice can be tailored and adjusted up or down if necessary. This ensures more efficient use of inputs and better-aligned fertilisation. There are also different recommendations for different varieties of crops.

2. Soil-based recommendations:

These recommendations can help you to invest in healthy and resilient soil for the future. This includes improving pH, optimising soil fertility, balancing the nutrients bound to the CEC to improve soil structure, and guidelines to maintain or improve the soil's organic matter status.

4. Soil life

A diverse and active soil life is essential for healthy and resilient soil. Microorganisms play an important role in the buildup or breakdown of organic material, as well as in the release of nutrients and the improvement of soil structure. A rich soil life also helps make the soil more resilient against diseases and pests.

5. Micronutrients

Micronutrients are essential nutrients that plants and microorganisms need for growth and development. Elements such as zinc, copper, iron, and manganese play a crucial role in photosynthesis, enzyme activity, and the uptake of other nutrients. A balanced presence of micronutrients contributes to higher crop yields and makes plants more resilient to diseases and stress factors. However, an excess can be harmful. Therefore understanding both is important.

6. Heavy metals

Soil contamination by heavy metals such as lead, cadmium, and chromium can severely affect soil health. These metals can be toxic to beneficial soil organisms and disrupt the uptake of essential nutrients by plants. This can lead to reduced crop yields, deteriorated soil structure, and long-term damage to the soil ecosystem. Additionally, heavy metals can accumulate in crops and pose a risk to human and animal health through the food chain.

New in Soil Health Indicator

SALT INDICES

Soil Health Indicator offers detailed salinisation indicators, not only ideal for soils in coastal areas but also for identifying the risk of salinisation problems during dry periods. The report provides insight into various sodium indicators (plant-available sodium (Na), Sodium Absorption Ratio (SAR), and the percentage of exchangeable sodium (ESP)). In addition to sodium, other salts are also reported, summarised in electrical conductivity (EC). All this data helps in taking measures such as crop selection or applying gypsum to prevent damage.

PHOSPHATE INDICES

New indicators for P-saturation and P-binding capacity. High phosphate saturation can lead to runoff and water pollution, while good phosphate binding is essential for nutrient availability to plants.

HEAVY METALS

New to Soil Health Indicator are the biologically available heavy metals. This is the amount of heavy metals available to the crop that can accumulate. There can be a significant difference between the total amount of heavy metals and their biological availability. Due to soil properties, such as pH, a large portion of the metals may not be absorbed by the crop, which may cause health issues for plants and animals.

SOIL LIFE

Insight into biological soil quality has been enhanced by displaying a total of 13 soil life parameters. Soil Health Indicator provides a fingerprint of the existing microbial soil food web, as well as its diversity and activity. New parameters include arbuscular mycorrhiza, fungi that form a symbiosis with the crop and exchange nutrients and water, and actinomycetes, filamentous bacteria that have a direct relationship with disease suppression.

SOIL HEALTH SCORE A-B-C-D-E: PROOF OF IMPROVEMENT AT A GLANCE

А	A: Excellent soil health: ideal for sustainable agricultural practices and soil management.
В	B: Good soil health: minor improvements are possible.
С	C: Average soil health: improvements are needed to achieve optimal yields.
D	D: Moderate soil health: measures needed for recovery.
E	E: Poor soil health: various improvements required to prevent further damage.

By regularly evaluating soil health using Soil Health Indicator and assigning a score, you can monitor the effectiveness of your soil management practices and provide evidence of progress of soil improvement. The A-B-C-D-E score is thus a valuable tool for both making strategic decisions and demonstrating sustainable performance, for example in reports or certifications for the agri-food industry.